

Educational and Research purposes only

Crypting
The Art of Detection Evasion

Ethan Linton

CISSP, CCNP, MCS 1st Class H.

Educational and Research purposes only

Preface

This research paper examines antivirus-evasion techniques with the singular

aim of advancing defensive cyber-security practice and academic discussion.

All examples and experimental results were produced and tested in a strictly

controlled environment on systems for which the author had full legal authority.

Minimal to no code fragments have been included in this publication to

reiterate the author's disapproval of any malicious application of the

information contained in this paper. Readers are reminded that, across

Australia, gaining unauthorised access to, modifying, or impairing computer

data or communications is a criminal offence under both State and

Commonwealth legislation.

Part 6 of the Crimes Act 1900 prohibits (among other conduct):

• Unauthorised access to or modification of restricted data (s 308H)

• Unauthorised modification of data with intent to cause impairment (s

308D)

• Unauthorised impairment of electronic communications (s 308E)

Each carrying penalties of up to 10 years' imprisonment depending on the

circumstances.

At the federal level, Division 477 of the Criminal Code Act 1995 (Cth)

criminalises unauthorised access, modification or impairment executed with

intent to commit a serious offence (s 477.1), while Division 478 addresses

unauthorised access to restricted data and other computer-related harms (s

478.1–478.2) These provisions operate alongside the Cybercrime Act 2001

(Cth), which extends jurisdiction and investigative powers for serious computer

offences.

The author emphatically disavows any malicious application of the information

contained in this paper. The techniques described must only be used with the

explicit, informed consent of the system owner and in compliance with all

relevant laws, ethical guidelines, and organisational policies. Nothing in this

paper should be construed as legal advice; practitioners should seek

professional counsel before conducting security testing outside a controlled

setting.

By proceeding beyond this preface, the reader affirms their understanding

that the knowledge presented is intended exclusively for lawful research,

defensive security work, and the collective strengthening of cyber-resilience.

Educational and Research purposes only

Table of Contents
Executive Summary .. 4

Crypting .. 5

Types of Crypters .. 5

Detection Evasion Techniques .. 6

Module Stomping ... 6

Why use Module Stomping? ... 7

Module Stomping Process ... 7

Module Stomping Example .. 7

Alternative Data Stream .. 13

Process Injection & Hollowing ... 13

Reflective PE Loading .. 13

Conclusion .. 14

Educational and Research purposes only

Executive Summary
This project, titled "Crypting: The Art of Detection Evasion," investigates advanced
techniques utilised to evade anti-virus (AV) and endpoint detection and response (EDR)
solutions. The paper begins by defining crypting and categorising different crypters,
including static, polymorphic, and metamorphic types, alongside their associated
evasion strategies.

Practical examples illustrate comprehensive evasion implementations such as module
stomping designed to bypass both static and dynamic detection systems. Specific
attention is given to this implementation, where legitimate modules in memory have
regions in which are overwritten with custom code to evade security measures.

The author conducted experiments demonstrating the techniques effectiveness,
notably achieving evasion from a majority of anti-virus solutions, including real-time
defences included within Windows Defender and Malwarebytes. Various
supplementary tactics, such as encrypted payloads with runtime decryption, direct
syscall invocations, and reflective PE loading, further highlight the complexity and
precision of evasion methods.

The research emphasises the importance of defensive cybersecurity awareness and
detailed technical understanding, urging security practitioners to adopt proactive threat
hunting and robust defence-in-depth strategies. Ethical and legal considerations
underpin this paper, reinforcing the necessity of explicit consent and adherence to
relevant laws when employing such techniques for educational or defensive purposes.

Educational and Research purposes only

Crypting
My life for the past four years has had a large focus on the world of cryptography,
evidentially through my occupation but also through genuine interest. I always knew
about the world of crypting and was interested in exploring it more – what you're reading
is the outcome of my exploration.

So, what is crypting? In layman's terms, it's a way of hiding code from detection – in
other words:

• It utilises symmetric encryption algorithms such as AES to encrypt what is
called the "payload."

• Creates a delivery application to decrypt the above-mentioned encrypted
payload and executes this payload

o This delivery application is obfuscated using techniques such as
garbage code insertion, register renaming, and control flow
flattening.

• The delivery application and payload are then packed together, thus
outputting a single file that (once run) will call upon the delivery
application to decrypt and execute the payload via reflective loading,
process hallowing, etc.

This all seems straightforward – so why do we have crypting services that charge $20
per file, $100 per crypt, or even $6,000 monthly? They each hold bypass claims with
somewhat of a reputation to back it up. These bypass claims include anti-memory
dump, and SmartScreen bypasses.

Crypting is an extensive term in relation to anti-virus evasion. There are many different
types of crypters, evasion techniques, and methodologies – and I'll be covering a few
throughout this post, including demonstrating a practical example that utilises module
stomping alongside many more techniques (more on that later) to achieve the bypass of
static and runtime analyses across many anti-virus providers.

Types of Crypters
Depending on how encryption is applied to payloads, there are different types of
crypters, such as Static, Polymorphic, and Metamorphic.

Static crypters use fixed encryption and decryption routines, meaning they use the
same encryption key each time. This makes static crypters easily detectable via static
analysis (signature detection).

Polymorphic crypters use dynamic encryption and decryption routines – this
modification of the encryption algorithm allows for the generation of a unique version

Educational and Research purposes only

for each delivery application and payload. This modification ensures that static-based
analysis detection is more challenging.

Metamorphic crypters combine the encryption elements of polymorphic crypters with
completely rewritten delivery application and code at each generation.

Included in the types of crypters are the evasion techniques it executes to avoid scan
time and runtime detections.

Scan time crypters are designed to avoid detection while it's being scanned by anti-virus
software – this typically means when the file is saved to disk, downloaded or
transferred. Anti-virus software uses signatures and heuristics to detect – this means if
the payload is encrypted and the delivery application is obfuscated, the anti-virus
software sees it as a clean file. However, once the file is run, behaviour-based anti-virus
kicks in – this is why we chain scan time and runtime evasion techniques together.

Runtime crypters avoid detection while the code is running on the host system.
Techniques utilised by runtime crypters include reflective DLL injection, process
hollowing, PE injection, module stomping and API obfuscation. Multiple strategies are
employed at once to avoid runtime detection – it's unlikely that a runtime crypter will
use just one technique.

Detection Evasion Techniques
This is where the fun begins… I will not be covering every technique, nor will I be going
too in-depth – I will primarily provide information surrounding only a few detection
evasion techniques.

Module Stomping
This is the fundamental technique that makes up my detection evasion strategy. So…
what is module stomping?

Picture an art heist. The thieves don’t conduct a loud break in - they stroll in wearing the
museum's uniforms, swap the genuine painting with a perfect-looking fake, and walk
out while security still thinks everything is normal.
That, in essence, is what module stomping does inside a running process.

When Windows loads a legitimate DLL, the operating system grants it a trusted place in
memory - much like a museum display. Instead of injecting a foreign payload, it quietly
overwrites the code inside that already-trusted DLL. The outside frame - the file on disk,
the export table, the digital signature - remains untouched, so anti-virus and EDR

Educational and Research purposes only

sensors keep "seeing" the original work. Meanwhile, the code now hanging behind the
frame carries out its own agenda while appearing as the original. By essentially hijacking
what's already loaded – it's probable to dodge the most tell-tale signs of interference.

Why use Module Stomping?

Because anti-virus engines usually trust DLLs that originate from reputable locations,
tampering with one of those already-loaded libraries allows the payload to slip
seamlessly into the host process. Since the DLL you have on disk is essentially
untouched and the payload has been executed entirely in memory – static detection
evasion occurs.

Module Stomping Process

1. Select a trusted module:
a. Identify a legitimate DLL already loaded in memory – this would often be a

standard Windows module signed and trusted by anti-virus software.
Think of ntdll.dll or kernel32.dll.

2. Memory overwrite
a. Reserve a memory region within the address space of the selected

trusted module, ensuring the allocated region has both write and execute
permissions. Overwrite this reserved memory region via shellcode
injection. At this stage, the original legitimate DLL on disk remains
untouched – thus typically avoiding detection by anti-virus.

3. Maintain the façade
a. Keep the DLL operational by tweaking only a narrow portion- say, patching

one routine or rerouting specific calls - so the module still behaves
normally and avoids detection.

Module Stomping Example

I experimented with creating a crypter using C++ (it's the easiest for this, I tried Go, and
that was just a mess) designed to transform typically detectable shellcode into
payloads that evaded detection by 68 out of 72 anti-virus products tested on
VirusTotal.com, including bypassing real-time protections provided by Windows
Defender and Malwarebytes.

How was this achieved?

An endless list of evasion techniques could potentially be applied to evade detection.
The following are only a few that I found interesting. Please note that maliciously
implementing the below evasion techniques will get you detected.

1. Encrypted payload + Runtime Decryption
a. The shellcode that lives on disk is XOR-encrypted, so anti-virus scanners

never see its raw bytes. Note: I know… XOR encryption?! Please don't use

Educational and Research purposes only

XOR encryption for actual encryption use cases… this is just so static
analysis, aka signature detection, doesn't pop off since the shellcode is
scrambled.

b. At runtime, a tiny multi-byte XOR loop reconstructs the real code in
memory just before execution.

2. Junk Operations to Foil Emulators
a. This prevents the compiler from optimising the loop away and adds

"noise" that can confuse sandbox detectors.
3. String-Free API Lookup via Export-Table Hashing

a. For example, rather than embedding the plain ASCII names
"NtAllocateVirtualMemory" or calling GetProcAddress, it stores only 32-
bit DJB2 hashes (e.g. 0x6793C34C) and walks ntdll.dll’s export directory
at runtime to find the matching export.

b. This removes any tell-tale "VirtualAlloc" or "CreateThread" strings from the
binary, thus tricking scanners that look for suspicious imports. When it
comes to detection evasion, anything counts.

4. Direct Syscall Invocation
a. This means directly invoking NtAllocateVirtualMemory,

NtProtectVirtualMemory, and NtCreateThreadEx, bypassing the typical
kernel32.dll wrappers.

b. That means any AV / EDR user-mode hooks on VirtualAlloc, VirtualProtect
or CreateThread never get called, and you land straight in the kernel
syscall.

5. RWX Memory without VirtualAlloc
a. Using the NtAllocateVirtualMemory syscall it's possible to carve out a

read-write-execute page instead of relying on the higher-level (and more
commonly hooked) VirtualAlloc.

6. In-Memory Thread Creation
a. Rather than CreateRemoteThread or RtlCreateUserThread, using

NtCreateThreadEx to spin up a thread directly against its hidden, freshly
allocated region could potentially meet this requirement. Through in-
memory thread creation, it is probable to side-step common user-mode
patch points.

7. Minimal C Runtime & Imports
a. This means keeping your IAT footprint lean and clean.

8. Clean-Up
a. After execution, restore page protections and free the RWX region to erase

any artifacts of the decrypted shellcode.

In other words… a typical evasion loader first decrypts its embedded, obfuscated
payload entirely in memory. It then loads a fresh copy of a harmless system DLL without

Educational and Research purposes only

running its initialisation routines, parses the DLL's in-memory headers to find the start
of its code section (.text), and then makes that section writable and executable. At the
DLL's entry point, it overwrites the original bytes with the decrypted payload, flushes the
CPU instruction cache, and creates a new thread beginning at that overwritten entry
point. In effect, the legitimate DLL has been "stomped" in place and now silently runs
the injected code instead of its own, evading on-disk scanning and hiding under the
guise of a trusted module.

Here are a few screenshots throughout the journey of evading detection.

The first screenshot below shows a scan conducted via Virustotal on the shellcode
within the compiled .exe file. As you can see, I am using shellcode, which is generally
detected when in raw format.

Educational and Research purposes only

The following screenshot displays another scan conducted by Virustotal after applying a
few unspecified evasion techniques. You can see that it's not "FUD" (that's what the
cool kids say; it means fully undetectable) – but generally, in a sense, these people who
sell this as a service typically tell you NOT to scan your application using VirusTotal.

Educational and Research purposes only

So that's all cool… it's essentially evading static detection, but what about runtime
detection? The two screenshots below display this capability. The top window is the
"ModuleStomp – Bypass.exe" shown in the previous Virustotal screenshot. This
executable runs shellcode, which would otherwise be detectable. The command
prompt displays a list of very generalised steps for debugging purposes. The window
below is Windows Defender running concurrently with real-time protection enabled.

The screenshot below (apart of a collection of two as noted above) displays the same
ModuleStomp – Bypass.exe executable file running concurrently alongside
Malwarebytes real-time protection. This here is another showcase of the evasion
capabilities surrounding runtime detection.

Educational and Research purposes only

The following screenshot below - is the Memory view of "ModuleStomp – Bypass.exe"
process in System Informer. It shows you the virtual address ranges for all the mapped
modules, and right in the middle, you can see the pages belonging to
C:\Windows\System32\winmm.dll around 0x7ffdc7e10000.

Notice how one of those regions is marked WCX (write-copy-execute) instead of the
normal read-only or read-execute you'd see for a DLL's code section. That's the region
that the module stomped on when it overwrote the .text section with the decrypted
shellcode and then changed its protection so the loader could execute from it. In short,
this displays the "module stomping" aspect of the evasion technique.

This essentially concludes the practical section of this paper. Comprehensive details
have been left out to combat any malicious application using the details that were
written above.

Educational and Research purposes only

Alternative Data Stream
An often-overlooked NTFS feature is Alternate Data Streams (ADS). Every NTFS file can
carry one or more hidden "streams" of data that don't appear in Explorer or a standard
dir. Windows itself will happily serve them up if you open the file with the stream name
appended (filename:streamname).

By placing your encrypted payload into an ADS attached to your delivery application,
you:

1. Never touch the visible filesystem with a raw shellcode blob.

2. Still, ship everything in one executable file.

3. Only read the ADS at runtime, decrypt it into memory, and execute it, leaving no
payload lying around on disk.

Process Injection & Hollowing
Instead of overwriting a DLL, the loader carves out a legitimate process ("svchost.exe,"
for example), unmaps its code section, writes in its own payload, fixes up
imports/relocations, and then resumes execution.

Because your code runs under the original PID, with all its loaded modules and
privileges, many AVs that watch for standalone processes will see an original binary
conducting normal operation - until your injected thread suddenly reaches out to your
callback.

Reflective PE Loading
Here, a PE image is carried as data, mapped wholly in memory, and manually linked
(headers, sections, base relocations and imports resolved) by the loader - no
LoadLibrary calls and no disk drop.

Because this happens out of sight of the OS loader - and because you never create any
on-disk artifacts - most static or simple heuristic scanners won't notice. Your reflective
loader sits in a small delivery application that itself was injected or allocated earlier,
decrypts or unpacks the real PE image, and then "reflectively" loads it into memory. The
result is a second stage - or entire payload - that looks like it sprang fully formed from
RAM, with no traces on disk and no normal loader calls to flag.

Educational and Research purposes only

Conclusion
In closing, it's essential to recognise that effective evasion is not the result of any single
trick but rather the careful orchestration of multiple techniques – as listed throughout
this paper and beyond - all working together to slip past defensive controls. This paper
has walked through the foundations of crypting, surveyed the various categories of
crypters, presented evasion implementation examples, and examined various anti-
analysis and anti-detection strategies. While these methods can be fascinating from a
technical standpoint, they also carry significant ethical and legal implications. Any
deployment of such capabilities must be conducted under proper authorisation and in
strict compliance with applicable laws. By understanding both the power and the
responsibility that comes with advanced evasion, security professionals can better
defend against it - and researchers can continue to push forward on the right side of the
line.

Thank you to Sam Anttila, S12, and INTEL471.

